Anion - π Interactions in Biological Systems

<u>Carolina Estarellas,</u> Antonio Frontera, David Quiñonero, Pere M. Deyà Department of Chemistry, Universitat de les Illes Balears, Crta.de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain.

Universitat de les Illes Balears Departament de Química

(3,+3)

Anion -π Interaction

Biological Systems

Urate oxidase belongs to the purine degradation pathway and catalyzes, in the presence of molecular oxygen, the hydroxylation of uric acid into a product identified as the 5-hydroxylsourate (5-HIU) and hydrogen peroxide. In vivo, 5-HIU is rapidly processed by two specific enzymes to [5]-Allantoin. The urate oxidase crystallizes in orthorombic system in Aspergillus flavus. The complete structure has the shape of a barrel 70 Å high, with an inner radius of about 6 Å. Each monomer is associated with one active site located at a dimer interface. It is known that UOX is inhibited in solution by cyanide with a loss of activity of 90%. The location of the cyanide anion suggests that it inhibits any access to the peroxo hole during the course

Uric acid and Phenylalanine Model **Figure 2.** Complexes **1** – **3** from crystal structure of PDB ID 3BJP. Distances in Å.

000

e 1. Top: Crystal Structure of active site of protein corresponding to PDB ID with cyanide anion. Bottom: Crystal Structure of active site of protein sponding to PDB ID 2IBA.⁸

MIPp (N⁻) energy map computed for uric acid establishing hydroger ractions at 3.5 Å above the molecular plane (kcal mol⁻¹). The value s correspond to the Interaction Energy for uric acid alone. **Figure 3.** Distribution of criti points (CP) in complexes 1 –

Table 1. Binding Energies without and with the BSSE Correction (E and E_{BSSE}, kcal mol⁻¹, respectively) at the RI-MP2(full)/aug-cc-pVDZ, RI-MP2(full)/aug-cc-pVTZ and RI-MP2(full)/CBS (E_{CBS}, kcal mol⁻¹) evels of Theory, for Complexes 1 – 3. Equilibrium Distances (R_e, Å) from crystal structure of the

Arg 176

Acknowledgment. We thank the MICINN and Govern Balear of Spain (projects CTQ2008-00841/BQU and PCTIB-2005GC3-08) for financial support. We thank the Centre de Supercomputació de Catalunya (CESCA) for computational facilities.